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Abstract
We show that an integrable lattice equation, obtained by J Hietarinta using
the ‘consistency around a cube’ method without the tetrahedron assumption, is
indeed solvable by linearization. We also present its nonautonomous extension.

PACS numbers: 02.30.Ik, 05.50.+q

1. Introduction

Constructing integrable lattice equations is a procedure which is both delicate and not
necessarily systematic. Two main approaches have been successfully used over the years.
The first one is indeed constructive [1]. One starts from some spectral problem, introducing a
Lax pair (usually, a family thereof) and derives all integrable equations which are associated
with this linear problem. While this method has the advantage of leading to systems which are
integrable by construction, it is not useful when it comes to dealing with lattice equations which
are obtained from some physical models and are thus given a priori. The second method is
tailored so as to deal with the latter situation. It is based on detection rather than construction.
Given a lattice equation, one applies one (or, better, several) integrability detectors [2, 3] and
if the system satisfies all integrability criteria one can confidently postulate its integrability.
The drawback of this method lies, of course, in the fact that it does not provide a proof
of integrability and one must in principle complement the study of the system by actually
integrating it.

Integrable lattice equations are particularly interesting. They contain and extend the
integrable (differential) evolution equations which can be obtained as (continuous) limits form
the discrete ones. Thus, the integrable lattice equations provide ideally suitable integrable
integrators for the corresponding evolution equations. Discrete systems on lattices can play
an important role in their understanding of discrete integrability. As a matter of fact the
singularity confinement property was discovered [2] by studying the lattice KdV equation.
Moreover one-dimensional mappings, such as the discrete Painlevé equations or discrete
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many-body systems, can be viewed as reductions of integrable lattices. Connections of the
latter to differential geometry and the combinatorics of graphs are also known to exist.

While integration with spectral methods, based on the existence of Lax pairs is the usual
way of integrating a given integrable evolution or lattice equation, there exists another type
of integrability (often ignored). Calogero [4] has coined the term c-integrability for the latter,
and what he means by this is that the system can be reduced to a linear one through the help
of a Cole–Hopf-type transformation. Thus, while integrability with the spectral method of an
evolution equation (s-integrability in the sense of Calogero) leads to a linear integrodifferential
system, in the case of c-integrability the linear system is a purely differential one. As we have
shown in [5] integrability through linearization does not require the Painlevé property (for
differential systems) or singularity confinement (for discrete ones). The aim of the present
paper is to analyse a system obtained by Hietarinta [6] who has proposed its integrability
through Lax pairs. We shall show that the system is much simpler than what was implied and
provide its explicit reduction to a linear equation.

In [6], Hietarinta has examined critically the work of Adler, Bobenko and Suris [7] who
have generated families of integrable lattice equations based on the ‘consistency around a cube’
(CAC) approach [8]. The main idea of this method is the following. One starts from a two-
dimensional square lattice, define the variable on the vertices xn,m, xn,m+1, xn+1,m, xn+1,m+1 and
write the multilinear equation relating these variables. In this way, solving for xn+1,m+1 gives a
rational expression of the other x’s. For the CAC trick, one adjoins a third direction, say k, and
imagine the mapping giving xn+1,m+1,k+1 as being the composition of mappings on the various
planes. There exist three different ways to obtain xn+1,m+1,k+1 and the consistency requirement
is that they lead to the same result. This places severe constraints on the multilinear equation,
but they do not suffice to determine it completely. Adler, Bobenko and Suris have introduced
two additional assumptions. They considered only a certain class of symmetrical forms for
the multilinear equation and also they required that xn+1,m+1,k+1 be independent of xn,m,k

(the tetrahedron property). Under the constraints of these simplifying assumptions, they were
able to produce a complete classification of lattice systems. The latter are all integrable, since
the procedure also furnishes their Lax pairs.

Hietarinta questioned these assumptions and produced one integrable lattice equation
which did not make use of the tetrahedron property. He also obtained the Lax pair for this
system, but as we shall show in the following section the integrability of this lattice equation
is of a much simpler type.

2. Hietarinta’s lattice equation

The lattice equation of Hietarinta has the form:
xn,m + b

xn,m + a

xn+1,m+1 + d

xn+1,m+1 + c
= xn+1,m + b

xn+1,m + c

xn,m+1 + d

xn,m+1 + a
. (1)

Our first approach to equation (1) is, in the ARS [9] spirit, through its reductions. The
simplest nontrivial reduction of (1) is obtained from the periodicity condition xn+1,m+1 = xn,m.
We readily find the mapping (omitting the second index)

xn+1 + b

xn+1 + c

xn−1 + d

xn−1 + a
= xn + b

xn + a

xn + d

xn + c
. (2)

Next, we study the integrability of this equation using the algebraic entropy method [3].
For this we compute the degree growth of the numerator and denominator of the iterates of (2)
in terms of the initial conditions. We find that the degree of the nth iterate grows like dn = n.
According to our results in [10] not only is (2) integrable, but moreover it is a linearizable
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mapping. An elementary calculation shows that (2) can be reduced to the homographic
mapping

xn+1 = xn((bd − ac) + (c − b)k) + ad(b − c) + (cd − ab)k

(d − a)(xn + k)
, (3)

where k is an integration constant. This is a highly nontrivial result and it leads to the
hypothesis that the full system (1) might be linearizable. This turns out to be the case indeed.
As a complementary indication we have computed the degree growth of the iterates of the
mapping (1) and we found again linear growth, reinforcing thus the linearizability hypothesis.

In order to linearize the lattice we start by a homographic transformation. We set

xn,m = d − cyn,m

yn,m − 1
(4)

and obtain the lattice equation

yn+1,m+1(yn,m + B)(yn,m+1 + A) = yn,m+1(yn,m + A)(yn+1,m + B), (5)

where B = (d − b)/(b − c), A = (d − a)/(a − c). Next, we remark that (5) can be put in the
form

Vn+1,m

Vn,m

= Un,

Un,m+1
, (6)

where Vn,m = yn,m+1/(yn,m + B) and Un,m = yn,m + A. Equation (6) in turn can be
parametrized by Vn,m = Qn,m/Qn,m+1. Introducing Wn,m = Qn+1,m/Qn,m, we find
Wn,m/Wn,m+1 = Un,m/Un,m+1. The solution of the latter is Un,m = f (n)Wn,m, with f a free
function of n, leading to yn,m+A = f (n)Qn+1,m/Qn,m and yn,m+1/(yn,m + B) = Qn,m/Qn,m+1.
Since only f (n) appears in the definition of y through a term f (n)Qn+1,m/Qn,m, it is clear that
it can be absorbed by a gauge transformation of Q and thus we can simply omit it. Eliminating
y, we obtain finally

Qn+1,m+1 − AQn,m+1 − Qn+1,m + (A − B)Qn,m = 0, (7)

i.e. a linear equation for Q. Solving (7) we can obtain y and thus reconstitute x.
The reduction of the lattice equation (1) to the form (5) was very helpful for its

linearization. It is interesting to note that an equation of the form (5) can be obtained as
a limit of (1). Indeed, taking d → 0, c → ∞ we find

xn+1,m+1(xn,m + b)(xn,m+1 + a) = xn,m+1(xn,m + a)(xn+1,m + b) (8)

which is exactly (5) with y = x,A = a, B = b.
At this point one may wonder what is the consequence of the linearizability on the Lax

pair. In [6], Hieratinta has given the Lax pair for (1). In order to simplify the presentation,
we analyse below the Lax pair for equation (8), which is obtained from that of (1) by taking
d → 0, c → ∞. This does not change anything in the argument, but does simplify the
computations. We have

L1(n,m) =




µ − a

xn,m + a

µa

xn,m + a
− µxn+1,m

xn,m

0 −xn+1,m

xn,m




L2(n,m) =




(µ − b)xn,m+1

xn,m + b

µbxn,m+1

xn,m + b

0
µxn,m+1

xn,m




(9)



L148 Letter to the Editor

and the lattice equation is obtained from the compatibility relation

L2(n,m + 1)L1(n,m) = L1(n + 1,m)L2(n,m). (10)

Since the lattice equation is independent of the spectral parameters λ,µ, we have simplified
further L1 and L2 by taking λ = 0. Next, we introduce the expression of x in terms of the
quantity appearing in the linear equation, xn,m = Qn+1,m/Qn,m − a and obtain for Q the
equation

Qn+2,m+1(Qn+1,m + (b − a)Qn,m) − Qn+1,m+1(Qn+2,m + bQn+1,m + a(b − a)Qn,m)

+ aQn,m+1(Qn+2,m + (b − a)Qn+1,m) = 0. (11)

It is then straightforward to show that (11) is a consequence of the linear equation
Qn+1,m+1 − aQn,m+1 − Qn+1,m + (a − b)Qn,m = 0.

Finally, one can wonder what are the (integrable) nonautonomous forms of the lattice
equation (1). The answer to this question is straightforward if we start from the linear
equation for Q

Qn+1,m+1 + fn,mQn,m+1 + gn,mQn+1,m + hn,mQn,m = 0. (12)

We assume now that f, g and h are free functions of n and m. Next, we introduce the
nonlinear variable xn,m = Qn,m+1/Qn,m and upshift (12) in the m direction and eliminate Q.
We thus find

(xn+1,m+1 + fn,m+1)xn+1,m(gn,mxn,m + hn,m) = (xn+1,m + fn,m)xn,m(gn,m+1xn,m+1 + hn,m+1).

(13)

In order to bring (13) under the form of (1), we may perform a homographic transformation
consisting in a translation, an inversion of the dependent variable followed by a new translation.
A total freedom exists at the homography level and two new free functions can thus be
introduced leading to the most general nonautonomous form of (1).

3. Conclusion

In this paper we have presented what we called the deconstruction of a lattice equation.
Namely, starting from a given equation, the integrability of which was already established, we
decided to probe deeper and thus discovered that its integrability was of a simpler nature than
the one implied in the original paper. This raises an interesting question: is this an exceptional
feature pertinent only to the equation at hand or is this a common feature for the equations
derived by the CAC principle without the tetrahedron assumption? Clearly, the analysis of
more examples is necessary before this question can be settled.
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